Sunday, July 3, 2011

the simple circuit, you can use your personal stereo to drive standard 8 ohm speakers.

Saturday, April 23, 2011

This amplifier circuit is build around the tda2006 integrated circuit who features a short circuit protection system, and a thermal shutdown system in case of overheating. With a 12v power supply the circuit delivers 12w on a 4 ohm speaker and 8w on a 8 ohm speaker. The integrated circuit can work with a power supply between 6v and 15v max.

Skema Rangkaaan 12W Audio Amplifier TDA2006
The TDA2006 is a monolithic integrated circuit in Pentawatt package, intended for use as a low frequency class "AB" amplifier. At ±12V, d = 10 % typically it provides 12W output power on a 4Ω load and 8W on a 8Ω . The TDA2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates an original (and patented) short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown system is also included. The TDA2006 is pin to pin equivalent to the TDA2030

This audio amplifier Circuit is a class-B audio power amplifier using a TDA1010. It is easy to construct and has only a few external components. The circuit is designed with short circuit and thermal protection. It can drive loads as low as 1.6 ohm and is capable of deliveringover 10 watts from a 16 V DC power supply.
Skema Rangkaian 10W Audio Amplifier TDA1010
The TDA1010 is a monolithic integrated class-B audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 10 W.

This is 4 Watt Amplifier Circuit Diagram for portable radio application using TDA1011 from Philips Semiconductor.

The TDA1011 is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 W load impedance. The device can deliver up to 6 W into 4 W at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the very low applicable supply voltage of 3,6 V permits 6 V applications. 
Skema Rangkaian TDA1011 - 4W Audio  Amplifier

This amplifier has been simulated extensively, although I haven't built it yet. I am saving circuit this one for a time when I can spend good time building and making sure the wiring is going to be optimal. I am going to use this amp in a bi-amp situation with passive filters on the input. This will result in two amplifiers that amplify the highs and two amplifying the lows (for stereo) and thus I can achieve an effective power of 120W into each speaker.
Skema Rangkaian 30W Class AB Amplifier  With TIP3055/TIP2955
To set the above amplifier up, set R1 to max and R12 to 0. After doing this successfully, power on the amplifier. Set R1 so that the measured output offset is between 30 and 100mV. Once set, adjust R12 slowly to achieve a quiescent current of around 120mA. Keep checking the quiescent current as the amp heats up as it might change due to voltage drop changes in the output devices caused by heat. The heatsinks should be 0.6K/W or less for two amplifiers.

Skema Rangkaian 200W MOSFET Amplifier      
A audio power amplifier circuit ideal for guitar or PA work or for use as a general-purpose subwoofer or hifi amplifier. Many people prefer Mosfets because of their legendary ruggedness. Altronics had a Mosfet amplifier module which produced 200W into a 4 Ohm load and so we decided to take a look it. It turned out to be based on the "Pro Series One" as mentioned above, although this version by Altronics has been derated and adapted to different Mosfets. It has a rated power output of 140W into 8W and 200W into 4 Ohm. Frequency response is within 1dB from 20Hz to 80kHz. Total harmonic distortion is rated at less than 0.1% up to full power and signal-to-noise ratio with respect to 200W is better than 100dB unweighted. 


This 200W MOSFET Amplifier  Circuit From http://electronics-diy.com/

This class A amplifier circuit requires a preamp as it hasn't got much gain. It requires big heat sinks and a large transformer and a great power supply and careful wiring, but in the end it is extremely simple and it sounds very good. The zener diode rejects any ripple coming from the power supply, But you still only want a ripple of 10mV max. The ripple reaching the input is amplified, so the zener gets rid of that, but whatever ripple there is will still reach the power stage.
Skema Rangkaian 14W Class A amplifier  Using 2N3055
Many early amplifiers operated in Class A, but as output powers rose above 10W the problems of heat dissipation and power supply design caused most manufacturers to turn to the simpler, more efficient Class B arrangements and to put up with the resulting drop in perceived output quality. Why Class A ? Because , when biased to class A, the transistors are always turned on, always ready to respond instantaneously to an input signal. Class B and Class AB output stages require a microsecond or more to turn on. The Class A operation permits cleaner operation under the high-current slewing conditions that occur when transient audio signal are fed difficult loads. His amplifier is basically simple, as can be seen from the block diagram.

This is a 60W power amplifier circuit based on 2N3055 transistor. The optimal supply voltage is around 50V, but this amp can work from 30 to 60V. As you can see, in this design the components have a big tolerance, so you can build it with almost any components that you can find at home. The output power transistors can be any NPN types, but do not use Darlington types.
Skema Rangkaian 60W Power Amplifier Class B
Capacitor C1 regulates the low frequencies (bass), as the capacitance grows, the low frequencies are getting louder. Capacitor C2 regulates the higher frequencies (treble), as the capacitance grows, the higher frequencies are getting quieter.

This is a class B amplifier, this means, that a current must flow through the end transistors, even if there is no signal on the input. This current can be regulated with the 500 Ohm trimmer resistor. As this current increases, the sound of the amplifier is better, but output transistors are dispatching more heat. If the current is decreased, the transistors are dispatching less heat, but the sound quality is decreased.

Here is a simple subwoofer filter circuit that can be powered by a 12V DC. This circuit is very useful in automotive applications subwoofer. The circuit is a low pass filter whose pass frequency can be set between 60 to 160 Hz
Subwoofer Filter Circuit Using Op-Amp TL072
Op-Amp TL072
The circuit is built around the TL072 dual op amp IC BIFET. Of the two operational amplifiers inside the chip, IC1A is wired as a buffer. The left and right audio inputs after mixing is fed to the input of the IC1A using the DPDT switch S1. Switch S1 is the phase control switch which can be used to make the subwoofer in phase with other speakers. When S1 is in position 2, 180 degree phase shift will be induced.POT R7 can be used for controlling the level. IC1B forms the low pass filter whose pass frequency can be controlled by adjusting the dual gang POT R13.

Note:
  • The circuit can be powered from 12V DC.
  • C5 and C6 must be polyester capacitors.
  • POT R13 can be used for adjusting the pass frequency.
  • POT R7 can be used for adjusting the level.

Thursday, March 3, 2011

Here is a 120 watt stereo amplifier circuit using STK4241V. The MAX9710 a stereo audio power amplifier IC capable of delivering 2 x 120 Watts of out put to 8 Ohm loads. MAX9710 can be operated from a single ±32V to ±54V power supply.
120 Watt Stereo Amplifier Circuit Using IC STK4241V
STK4241V IC

This amplifier circuit is suitable for home power audio devices. The STK4241V amplifier specifications might lead you to believe that it can use supply voltages of up to ±78V. With zero input signal (and therefore no output) it might, but I don't recommend anything greater than ±45V if 8 ohm loads are expected, although ±54V will be fine if you can provide good heatsinking.

Wednesday, March 2, 2011

Here is a 3 Watt stereo amplifier circuit using MAX 7910 IC. The MAX9710 a stereo audio power amplifier IC capable of delivering 3Watts of out put to 4 Ohm loads. MAX9710 can be operated from a single 4.5V to 5.5V power supply , makes it ideal for hand held applications.The IC also features thermal overload protection.
Skema Rangkaian 3 Watt  Stereo Amplifier MAX 7910 
This amplifier circuit is suitable for small power audio devices such as radio sets and portable CD players. 5 V DC power supply is used for powering the circuit. 6V battery with an IN 4007 diode series to the positive terminal of it can also be used instead of 5 V DC supply. The circuit will get a supply voltage approximately 5 V after 0.7 V voltage drop across diode.

Sunday, February 27, 2011

This is a 300W power amplifier OCL circuit that the circuit has been stout kit on the market. If you are fanatical about the use of transistors 2N3055 and MJ2955 jengkol then this circuit is the answer. This power amplifier OCL circuit delivering a blasting 300 watts to a 4 Ohm speaker.
300 Watt OCL Audio Amplifier Circuit
The amplifier circuit is very Cheapest and cans be powered from 24 to 32 V/5A dual power supply. You must try this circuit. Its working great. Because 4 transistors (2 x 2n3055 and mj 2955) on the final amplifier will of some very hot then add the aluminum finned cooler and the fan so That the transistor is not too high temperatures

Saturday, January 22, 2011

The 300W Amplifier circuit is shown it is a reasonably conventional design. Connections are provided for the Internal SIM, and filtering is provided for RF protection (R1, C2). The input is via a 4.7uF bipolar cap, as this provides lots of capacitance in a small size. Because of the impedance, little or no degradation of sound will be apparent. A polyester cap may be used if you prefer - 1uF with the nominal 22k input impedance will give a -3dB frequency of 7.2Hz, which is quite low enough for any sub.
Rangkaian 300W Power Amplifier For  Subwoofer
Continuous power into 8 ohms is typically over 150W (250W for ±70V supplies), and it can be used without additional transistors at full power into an 8 ohm load all day, every day. The additional transistors are only needed if you want to do the same thing into 4 ohms at maximum supply voltage

Although I have shown MJL4281A and MJL4302A output transistors, because they are new most constructors will find that these are not as easy to get as they should be. The alternatives are MJL3281/ MJL1302 or MJL21193/ MJL21194. 

Because this amplifier circuit operates in "pure" Class-B (something of a contradiction of terms, I think), the high frequency distortion will be relatively high, and is probably unsuited to high power hi-fi. At the low frequency end of the spectrum, there is lots of negative feedback, and distortion is actually rather good, at about 0.04% up to 1kHz. My initial tests and reports from others indicate that there are no audible artefacts at high frequencies, but the recommendation remains.

Circuit from: www.sound.westhost.com

The amplifier circuit uses the basic circuitry of the 70W power amplifier, but modified for true Class-A operation - it should be pretty nice! This amp has been built by several readers, and the reports I have received have been very positive.

With simulations, everything appears to be as expected, but although I have yet to actually build it and test it out thoroughly, no-one has had any problems so far. Using +/-20 Volt supplies - either conventional, regulated or using a capacitance multiplier, it should actually be capable of about 22 W before clipping, but expect to use a big heatsink - this amp will run hot.l.)
Rangkaian 20 Watt Class-A Power Amplifier
The current sink shown should have very high linearity, since it is based on the same concept as the output stage devices. The 0.25 Ohm resistor should cause little grief (4 x 1 Ohm 1W resistors in parallel), but some experimentation may be needed here, since the base-emitter voltage of the BC549 determines the current. This circuit works by using the BC549 to steal any excess base current from the compound pair. As soon as the voltage across the 0.25 Ohm resistor exceeds 0.65V, the transistor turns on and achieves balance virtually instantly.

The 1k trimpot in the collector of the first LTP transistor allows the DC offset to be adjusted. The nominal value is around 400 ohms, but making it variable allows you to set the output DC offset to within a few mV of zero.

The 70 watt amplifier circuit is pretty much original, and with a +/-35V supply as shown, will provide 70W into 8 Ohms quite happily. In its lifetime, many of the mods mentioned above were made anyway, since I could never find the circuit diagram when I needed it, so often made it up as I went along! It is a fair testament to the amp that all sorts of resistor and capacitor substitutions can be made, and it still works fine.
Skema Rangkaian  2N30055|MJE2955 70 Watt
Power Amplifier
This amplifier is fairly well behaved for turn on, and should issue (at worst) the smallest click as power is applied. When power is removed, after about 5 seconds or so, there will normally be a low level thump - this is not dangerous to speakers, unless used in tri-amp and directly connected to the tweeters - DO NOT DO THIS - not with any amp. Always use a capacitor in series with tweeters (see Bi-Amplification, Some thoughts on Tri-Amping).

Circuit from: www.sound.westhost.com

The TDA7293 Power Amplifier circuit is conventional, and is very simple because all additional internal functions are unused. The LED is optional, and if you don't think you'll need it, it may be omitted, along with series resistor R3. All connections can be made with plugs and sockets, or hard wired. In most cases, I expect that hard wiring will be the most common, as the connectors are a pain to wire, and add unnecessary cost as well as reduce reliability.
Skema Rangkian 100Watt Power Amplifier  TDA7293
TDA7293 Pin Out
The TDA7293 amplifier specifications might lead you to believe that it can use supply voltages of up to ±50V. With zero input signal (and therefore no output) it might, but I don't recommend anything greater than ±35V if 4 ohm loads are expected, although ±42V will be fine if you can provide good heatsinking. In general, the lower supply voltage is more than acceptable for 99% of all applications, and higher voltages should not be used unless there is no choice. Naturally, if you can afford to lose a few ICs to experiments, then go for the 42V supplies (obtained from a 30+30V transformer).

This is a simple microphone preamplifier circuit which you can use between your microphone and stereo amplifier. This circuit amplifier microphone suitable for use with normal home stereo amplifier line/CD/aux/tape inputs.
Skema Rangkaian Simple Microphone Preamplifier

The circuit is based on a low noise, high gain 2 stage PNP and NPN transistor amplifier, using DC negative feedback through R6 to stabilize the working conditions quite precisely. Output level is attenuated by P1 but, at the same time, the stage gain is lowered due to the increased value of R5. This unusual connection of P1, helps in obtaining a high headroom input, allowing to cope with a wide range of input sources (0.2 to 200mV RMS for 1V RMS output).

List Component of Microphone Preamplifier  Circuit
P1         : 2K2 Potentiometer
R1,R2,R3 : 100K
R4 : 8K2
R5 : 68R
R6 : 6K8
R7,R8 : 1K
R9 : 150R
C1 : 1µF/63V
C2,C3,C4 : 100µF/25V
C5 : 22µF/25V
Q1 : BC560C
Q2 : BC550C

This circuit is derived from the Portable Headphone Amplifier featuring an NPN/PNP compound pair emitter follower output stage. An improved output driving capability is gained by making this a push-pull Class-A arrangement. Output power can reach 427mW RMS into a 32 Ohm load at a fixed standing current of 100mA. The single voltage gain stage allows the easy implementation of a shunt-feedback circuitry giving excellent frequency stability.
Skema Rangkaian Class-A Headphone Amplifier
The above mentioned shunt-feedback configuration also allows the easy addition of frequency dependent networks in order to obtain an useful, unobtrusive, switchable Tilt control (optional). When SW1 is set in the first position a gentle, shelving bass lift and treble cut is obtained. The central position of SW1 allows a flat frequency response, whereas the third position of this switch enables a shelving treble lift and bass cut.

Note:
  • Before setting quiescent current rotate the volume control P1 to the minimum, Trimmer R6 to zero resistance and Trimmer R3 to about the middle of its travel.
  • Connect a suitable headphone set or, better, a 33 Ohm 1/2W resistor to the amplifier output.
  • Connect a Multimeter, set to measure about 10Vdc fsd, across the positive end of C5 and the negative ground.
  • Switch on the supply and rotate R3 in order to read about 7.7-7.8V on the Multimeter display.
  • Switch off the supply, disconnect the Multimeter and reconnect it, set to measure at least 200mA fsd, in series to the positive supply of the amplifier.
  • Switch on the supply and rotate R6 slowly until a reading of about 100mA is displayed.
  • Check again the voltage at the positive end of C5 and readjust R3 if necessary.
  • Wait about 15 minutes, watch if the current is varying and readjust if necessary.
List Component of  Class-A Headphone Amplifier

P1          : 22K  Dual gang Log Potentiometer 
R1 : 15K
R2 : 220K
R3 : 100K
R4 : 33K
R5 : 68K
R6 : 50K
R7 : 10K
R8,R9 : 47K
R10,R11 : 2R2
R12 : 4K7
R13 : 4R7
R14 : 1K2
R15,R18 : 330K
R16 : 680K
R17,R19 : 220K
R20,R21 : 22K
C1,C2,C3,C4 : 10µF/25V
C5,C7 : 220µF/25V
C6,C11 : 100nF
C8 : 2200µF/25V
C9,C12 : 1nF
C10 : 470pF
C13 : 15nF
D1 : LED
D2,D3 : 1N4002
Q1,Q2 : BC550C
Q3 : BC560C
Q4 : BD136
Q5 : BD135
IC1 : 7815
T1 : 15CT/5VA Mains transformer
SW1 : 4 poles 3 ways rotary Switch
SW2 : SPST slide or toggle Switch

 

blogger templates | Make Money Online